A New Phase-Equilibrium Model for Simulating Industrial Nylon-6 Production Trains

Kevin C. Seavey, Neeraj P. Khare, and Y. A. Liu*
Honeywell Center of Excellence in Computer-Aided Design, Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Thomas N. Williams
Honeywell International, Inc., 15801 Woods Edge Road, Colonial Heights, Virginia 23834

Chau-Chyun Chen
Aspen Technology, Inc., Ten Canal Park, Cambridge, Massachusetts 02141

This paper presents a thermodynamically consistent model for the phase equilibrium of water/caprolactam/nylon-6 mixtures, based on the POLYNRTL (polymer nonrandom two-liquid) activity-coefficient model. Our model predicts phase equilibrium for any binary or ternary mixture containing water, ε-caprolactam, and nylon-6 at industrially relevant temperatures and pressures with an average error of 1%. This paper also demonstrates its application to simulate a melt train and a bubble-gas kettle train for industrial production of nylon-6. Prior literature makes simplifying assumptions about liquid-phase (molten polymer) activities of water and ε-caprolactam; these assumptions are shown to be unrealistic.

1. Introduction

It is hard to overestimate the importance of nylon in the development of polymer science and in the commercial growth of polymer applications. Nylon was discovered by Wallace Hume Carothers in 1935 and produced commercially by DuPont and IG Farben beginning in 1939.1 Nylon’s combination of strength, toughness, and high melt temperature made it the first engineering thermoplastic, capable of myriad uses. It quickly found application in synthetic fibers, which then be fed directly to spinning or pelletizing. However, vaporization of the water may also removed by vaporization to increase the molecular weight. However, vaporization of the water may also remove a significant amount of caprolactam, which is recovered and recycled.

In conventional processes, the polymer is then pelletized and leached with hot water to remove low-molecular-weight extractables, such as residual monomer and cyclic oligomers. The polymer is then dried and shipped elsewhere or used directly to spin fibers.10

By contrast, in direct melt processes, the extraction and drying steps are avoided by devolatilizing the polymer of unreacted monomer. Molten polymer can then be fed directly to spinning or pelletizing. However, melt polymers are typically modified (terminated with monofunctional amines and carboxylic acids) to limit the molecular weight produced at the low levels of water achieved when removing unreacted caprolactam. Therefore, direct melt processes have a limited product range compared with conventional processes.

Within these two process variants, i.e., conventional and direct melt, a number of commercial technologies manufacturing technologies to demonstrate the critical impact of phase equilibrium. We then outline prior simulation studies that seek to understand and optimize these processes and their deficiencies. Lastly, we discuss current problems facing the simulation of nylon-6 phase equilibrium and show how to address these problems.

1.1. Commercial Nylon-6 Manufacturing Processes

Figure 1 depicts a conventional nylon-6 production scheme.

The reactor feed typically contains fresh caprolactam monomer, recycled monomer, water, and desired additives,9 such as chain-terminating agents, fire-retarding agents, and delustrants. The reactor section hydrolyzes the monomer, converts it to a polymer, and builds up the polymer molecular weight.

Because the molten polymer is in equilibrium with water and monomer, the byproduct water must be removed by vaporization to increase the molecular weight. However, vaporization of the water may also remove a significant amount of caprolactam, which is recovered and recycled.

In conventional processes, the polymer is then pelletized and leached with hot water to remove low-molecular-weight extractables, such as residual monomer and cyclic oligomers. The polymer is then dried and shipped elsewhere or used directly to spin fibers.

By contrast, in direct melt processes, the extraction and drying steps are avoided by devolatilizing the polymer of unreacted monomer. Molten polymer can then be fed directly to spinning or pelletizing. However, melt polymers are typically modified (terminated with monofunctional amines and carboxylic acids) to limit the molecular weight produced at the low levels of water achieved when removing unreacted caprolactam. Therefore, direct melt processes have a limited product range compared with conventional processes.

Within these two process variants, i.e., conventional and direct melt, a number of commercial technologies

* To whom correspondence should be addressed. Tel.: (540) 231-7800. Fax: (540) 231-5022. E-mail: design@vt.edu.
We split our literature review into three sections: nylon-6 polymerization kinetics, phase-equilibrium modeling, and water/caprolactam/nylon-6 phase-equilibrium data from the literature. We report nylon-6 polymerization kinetics for two reasons. First, we simulate the reactive system to obtain the binary interaction parameters for water/nylon-6 and caprolactam/nylon-6 segments. Second, we use the existing kinetic model, along with our thermodynamic and mass-transfer models, to build integrated models for commercial nylon-6 processes.
et al.19 This methodology tracks the polymer concentration based on the patent by Barrera and the above reaction-kinetics model using the segment-based methodology detailed in the patent by Barrera et al.19 This package implements the commercial simulation package POLYMERS PLUS to simulate polymerization of nylon-6 polymers. This package implements the above reaction-kinetics model using the segment-based methodology detailed in the patent by Barrera et al.19 This methodology tracks the polymer concentration and number-average degree of polymerization by tracking the concentrations of their constitutive segments. Figure 2 shows the segmental breakdown of nylon-6 molecules that can be either untermininated or terminated by AA.

We assume that this reaction follows the same kinetics as the polycondensation reaction, as in ref 5. We ignore the analysis of cyclic oligomers higher than dimers for the sake of simplicity.

We use Aspen Technology’s (Cambridge, MA) commercial simulation package POLYMERS PLUS to simulate nylon-6 polymerizations. This package implements the above reaction-kinetics model using the segment-based methodology detailed in the patent by Barrera et al.19 This methodology tracks the polymer concentration and number-average degree of polymerization by tracking the concentrations of their constitutive segments. Figure 2 shows the segmental breakdown of nylon-6 molecules that can be either untermininated or terminated by AA.

Table 2. Nylon-6 Hydrolytic Polymerization Reaction Mechanisms

<table>
<thead>
<tr>
<th>reaction name</th>
<th>equilibrium reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ring opening of caprolactam</td>
<td>$W + CL \xrightarrow{k_{1}} P_1$</td>
</tr>
<tr>
<td>polycondensation</td>
<td>$P_m + P_n \xrightarrow{k_{2}} P_{m+n} + W$</td>
</tr>
<tr>
<td>polyaddition of caprolactam</td>
<td>$CL + P_n \xrightarrow{k_{3}} P_{n+1}$</td>
</tr>
<tr>
<td>ring opening of cyclic dimer</td>
<td>$W + CD \xrightarrow{k_{4}} P_2$</td>
</tr>
<tr>
<td>polyaddition of cyclic dimer</td>
<td>$CD + P_n \xrightarrow{k_{5}} P_{n+2}$</td>
</tr>
</tbody>
</table>

k_2 is aminocaproic acid. P_n is a nylon-6 molecule with a degree of polymerization n.

2.1. Nylon-6 Polymerization Kinetics. Arai et al.18 have presented the accepted standard regarding the chemistry and kinetics of the hydrolytic polymerization of ε-caprolactam. Their reaction mechanism includes the ring opening of caprolactam (CL), polycondensation, polyaddition of CL, ring opening of a cyclic dimer (CD), and polyaddition of a CD. Table 2 lists these five equilibrium reactions.

Table 3 gives the accompanying rate constants k_i, again from Arai et al.18

We add one more equilibrium reaction to this kinetic scheme: the termination reaction with a monofunctional acid, such as acetic acid (AA).

$$AA + P_n \xrightarrow{k'_2} P_{nx} + W \quad (1)$$

We assume that this reaction follows the same kinetics as the polycondensation reaction, as in ref 5. We ignore the analysis of cyclic oligomers higher than dimers for the sake of simplicity.

We use Aspen Technology’s (Cambridge, MA) commercial simulation package POLYMERS PLUS to simulate nylon-6 polymerizations. This package implements the above reaction-kinetics model using the segment-based methodology detailed in the patent by Barrera et al.19 This methodology tracks the polymer concentration and number-average degree of polymerization by tracking the concentrations of their constitutive segments. Figure 2 shows the segmental breakdown of nylon-6 molecules that can be either untermininated or terminated by AA.

Nylon-6 segments include the nylon-6 repeat segment (B-ACA) and the end groups terminal amine (T-NH$_2$), terminal carboxylic acid (T-COOH), and terminal AA (T-AA). Table 4 presents the reactions in Table 2 expressed using segment notation.

Table 3 presents the associated reaction rates for each equilibrium reaction. Table 5 gives the species conservation equations corresponding to the reaction rates of Table 4.

POLYMERS PLUS estimates the concentrations of oligomers of degree of polymerization 2 and 3 below:

$$[P_2] = [T-COOH] \frac{[T-NH_2]}{[B-ACA] + [T-NH_2]} \quad (2)$$

$$[P_3] = [T-COOH] \frac{[B-ACA]}{[B-ACA] + [T-NH_2]} \frac{[T-NH_2]}{[B-ACA] + [T-NH_2]} \quad (3)$$

We compute the number-average degree of polymerization, DP_n, by considering the distribution of polymer chain lengths. This distribution contains m different chain lengths, with each chain length i characterized by a population of N_i chains with degree of polymerization DP_i:

$$DP_n = \frac{\sum_{i=1}^{m} N_i DP_i}{\sum_{i=1}^{m} DP_i} \quad (4)$$

In terms of segments, the numerator of eq 4 represents the total concentration of segments that count as repeat units, or $([B-ACA] + [T-COOH] + [T-NH_2] + [P_3])$. The denominator represents the concentration of polymer.
Table 4. Nylon-6 Polymerization Reactions Written in Segment Notation

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring-Opening of Caprolactam (W + CL)</td>
<td>[R_1 = k_1[W][CL] - k_1'[P_1]]</td>
</tr>
<tr>
<td>Polycondensation (P_n + P_{n+1} \xrightarrow{\kappa_n} P_{n+n} + W)</td>
<td>[R_2 = k_2[P_1][W]]</td>
</tr>
<tr>
<td>Polyaddition of Caprolactam (CL + P_{n+1} \xrightarrow{\kappa_n} P_{n+n+1})</td>
<td>[R_6 = k_3[P_1][CL] - k_3'[P_2]]</td>
</tr>
<tr>
<td>Polyaddition of Cyclic Dimer (CD + P_{n+1} \xrightarrow{\kappa_n} P_{n+n+2})</td>
<td>[R_9 = k_3[P_1][CD] - k_3'[P_3]]</td>
</tr>
<tr>
<td>Polyaddition of Cyclic Dimer (CD + P_{n+1} \xrightarrow{\kappa_n} P_{n+n+2})</td>
<td>[R_{10} = k_3[T-NH_2][CD] - k_3'[T-NH_2]]</td>
</tr>
<tr>
<td>Polycondensation of Acetic Acid (P_n + AA \xrightarrow{\kappa_n} P_{n+AA})</td>
<td>[R_{11} = k_2[AA][P_1] - k_2'[W][T-AA]]</td>
</tr>
<tr>
<td>T-NH_2 + AA \xrightarrow{\kappa_n} B-ACA + T-NH_2</td>
<td>[R_{12} = k_2[AA][T-NH_2] - k_2'[W][T-AA]]</td>
</tr>
</tbody>
</table>

A colon represents a covalent bond between segments.

Table 5. Species Conservation Equations for the Reaction Rates in Table 4

<table>
<thead>
<tr>
<th>Functional Group</th>
<th>Time Rate of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>d[W]/dt = R_3 + R_4 + R_5 + R_8 + R_11 - R_12 - (R_1 + R_9)</td>
</tr>
<tr>
<td>CL</td>
<td>d[CL]/dt = -(R_1 + R_6 + R_9)</td>
</tr>
<tr>
<td>CD</td>
<td>d[CD]/dt = -(R_9 + R_10)</td>
</tr>
<tr>
<td>AA</td>
<td>d[AA]/dt = -(R_11 + R_12)</td>
</tr>
<tr>
<td>B-ACA</td>
<td>d[B-ACA]/dt = R_3 + R_4 + 2R_5 + R_7 + R_9 + 2R_{10} + R_{12}</td>
</tr>
<tr>
<td>T-NH_2</td>
<td>d[T-NH_2]/dt = R_2 + R_6 + R_8 + R_9 + R_{11} - (R_5)</td>
</tr>
<tr>
<td>T-COOH</td>
<td>d[T-COOH]/dt = R_2 + R_6 + R_8 + R_9 + R_{11} - (R_5)</td>
</tr>
<tr>
<td>T-AA</td>
<td>d[T-AA]/dt = R_{11} + R_{12}</td>
</tr>
</tbody>
</table>

We do not compute the weight-average degree of polymerization, nor do we compute higher moments of the distribution of the DP.

2.2. Polymer Equilibrium. 2.2.1. Previous Attempts at Developing a Phase-Equilibrium Model for Water/Caprolactam/Nylon-6. Researchers typically use one of three phase-equilibrium models in simulating nylon-6 polymerizations: the Jacobs–Schweigman model,20 the Fukumoto model,21 or the Tai et al. model.12 These models only predict water concentrations in reacting mixtures of water, caprolactam, and nylon-6.

The Jacobs–Schweigman model20 is the most simplistic of the three models. It consists of an empiricism based on experimental equilibrium data for a VK (Vereinfacht K fintuijerliches) tube reactor. The model predicts the concentration of water [W] as a function of temperature T:

\[[W] \text{ (mol/kg)} = \frac{1.76 - 0.006T \text{ (°C)}}{1.8} \]
Because this expression does not contain pressure as a free variable and was developed using VK tube equilibrium data, it should not be used at pressures deviating from atmospheric pressure.

Adding the system pressure \(P \) to the Jacobs–Schweigman model results in the Fukumoto model based on vapor–liquid equilibrium (VLE) data:

\[
[W] \text{ (mol/kg)} = P \text{ (mmHg)} \exp \left(\frac{8220}{T \text{ (K)}} - 24.0734 \right) \quad (7)
\]

The third model is the Tai et al. model, which explicitly considers the partial pressures of volatile components. It consists of a system of three equations to solve for the mole fraction of water, \(x_w \), given the temperature \(T \) and total pressure \(P \):

\[
\log \left(\frac{x_w}{P_w \text{ (mmHg)}} \right) = \frac{3570}{T \text{ (K)}} - 11.41 \quad (8)
\]

\[
\log [P_{CL} \text{ (mmHg)}] = -\frac{4100}{T \text{ (K)}} + 9.6 \quad (9)
\]

\[
P = P_w + P_{CL} \quad (10)
\]

\(P_w \) is the partial pressure of water, and \(P_{CL} \) is the partial pressure of caprolactam.

All three models are empirical. Therefore, we cannot be confident in their phase-equilibrium predictions at conditions that deviate from those in which they are based.

Significantly, these three models give conflicting predictions for identical process conditions. Consider, for example, the water liquid-mole-fraction predictions at atmospheric pressure for a mixture of water, caprolactam, and nylon-6 at a range of relevant processing temperatures of 473–523 K (Table 6).

The Fukumoto model predicts mole fractions that are about twice those of the Jacobs–Schweigman predictions. Furthermore, the Tai et al. model predicts mole fractions that are an order of magnitude higher than both models. This difference casts considerable doubt on the validity of at least two of these models.

2.2.2. Polymer Nonrandom Two-Liquid (POLYNRTL) Model. Bokis et al. give an excellent description of how to choose an appropriate thermodynamic equilibrium model when simulating polymer processes. They suggest using activity-coefficient models, instead of equations of state, for processes that involve low-to-moderate pressures (pressure \(< 1 \times 10^5 \text{ Pa}\)) and/or nonideal components (e.g., polar compounds such as alcohols, water, and ketones).

Furthermore, they state that the POLYNRTL activity-coefficient model has the following advantages over the Flory–Huggins (FH) and universal quasi-chemical functional group (UNIFAC) activity-coefficient models:

1. POLYNRTL covers large ranges of temperatures and compositions accurately.

2. POLYNRTL takes advantage of the already existing database of NRTL binary interaction parameters.

On the basis of these suggestions, we choose to model nylon-6 phase equilibrium using the POLYNRTL property method. This method uses (1) the polymer NRTL activity-coefficient model for the liquid phases, (2) the Redlich–Kwong equation of state for the vapor phase, (3) the van Krevelen model for the liquid properties (enthalpy, entropy, Gibbs free energy, heat capacity, and molar volume), and (4) Henry’s law for any supercritical components.

The POLYNRTL activity-coefficient model combines the traditional NRTL model with the FH description for configurational entropy. It essentially calculates the Gibbs free energy of mixing in a polymer solution as the sum of two contributions: (1) the entropy of mixing from the FH activity-coefficient model; (2) the enthalpy of mixing from the NRTL activity-coefficient model. These activity coefficients include binary parameters to model the interactions between two components. POLYNRTL represents the temperature dependence of the binary interaction parameters \(r_{ij} \) by eq 11. We set the nonrandomness factor \(a_{ij} \) to 0.3, as suggested by Prausnitz et al.

Therefore, we model binary interactions in equilibrium mixtures by specifying the coefficients \(a_{ij} \) through \(c_{ij} \). We typically regress equilibrium data or use a predictive model, such as UNIFAC, to obtain the values of these parameters.

2.3. Equilibrium Data for Water/Caprolactam/Nylon-6. There are two sources of phase-equilibrium data that we use for regression. The first source characterizes the binary interactions between water and caprolactam. The second characterizes the interactions in the reactive, ternary system nylon-6/caprolactam/water. All of the data sets appear in the Supporting Information.

Maczinger and Tettamanti give four sets of low-pressure, isobaric phase-equilibrium data for the binary water/caprolactam. Tables 15–18 in the Supporting Information show their data.

Giori and Hayes present one set of isothermal phase-equilibrium data for the ternary system water/caprolactam/nylon-6. They carry out nylon-6 polymerizations at 543 K in a laboratory reactor and characterize the resulting phase equilibrium. Table 19 in the Supporting Information shows their experimental data.

3. Methodology

We first characterize the binary interactions between water and caprolactam using the first four data sets (Tables 15–18 in the Supporting Information).

We then simulate the Giori and Hayes experiments to quantify the binary interactions between water/nylon-6 and caprolactam/nylon-6.

3.1. Characterizing the Phase Equilibrium of Water/Caprolactam. Here, we explain how to obtain the binary parameters for water/caprolactam. Our handling of the data consists of testing the data for thermodynamic consistency. We use two consistency tests for our isobaric data sets: a Van Ness et al. test and a Wisniak test. The Wisniak test can be used in a point or area mode; however, we use only the point...
test because of the difficulty in accurately computing integrals of “functions” of our experimental data.

3.1.1. Consistency Test One: Van Ness et al.32 In this test, we first obtain a redundant data set comprised of temperature, pressure, liquid-mole-fraction, and vapor-mole-fraction measurements (T–P–x–y). We then regress only the T–P–x data. After regressing these data, we are able to predict the original pressure data (using T–x data) and vapor-mole-fraction data (using T–P–x data). Consistency test one comes by examining the extent of correlation between the measured and predicted vapor mole fractions. This test is an indirect application of the Gibbs–Duhem equation because the POLY-NRTL model obeys the Gibbs–Duhem equation.

The fundamental phase-equilibrium relation for this analysis is

\[\gamma_i \phi_i P = x_i \gamma_i(x_i, T) P_{i,sat}(T) \exp \left(\frac{v_i}{RT} (P - P_{i,sat}) \right) \]

(12)

We compute the activity coefficient \(\gamma_i \) using the POLY-NRTL model; it is a function of the liquid composition \(x_i \) and temperature \(T \). \(P_{i,sat} \) is the vapor pressure, which we compute using an Antoine form:

\[P_{i,sat} = \exp\left(A_i + B_i \frac{T}{T_s} + C_i \ln\frac{T}{T_s} + D_i (T/T_s)^{1/2}\right) \]

(13)

We have neglected vapor-phase nonidealities (fugacity coefficient \(\phi_i \) equals 1) because most of the data are at vacuum conditions; however, one can easily estimate the degree of vapor-phase nonideality occurring at high pressures using the Redlich–Kwong equation of state. Furthermore, the Poynou pressure correction is negligible (the exponential term is 1).

We eliminate the need for vapor-phase composition data by summing eq 12 over all species; for a binary system containing species i and j, we have

\[P = x_i \gamma_i(x_i, T) P_{i,sat}(T) + x_j \gamma_j(x_j, T) P_{j,sat}(T) \]

(14)

Using the T–P–x data, we manipulate the six POLYNRTL binary interaction parameters (\(a_{ij} \) through \(c_{ij} \) for water/caprolactam and caprolactam/water; eq 11) to minimize the following sum-of-squares error (SSE) for each data point \(k \):

\[\text{SSE} = \sum_k \left(\frac{P_{k,obsd} - P_{k,calc}^2}{P_{k,obsd}} \right)^2 \]

(15)

Once we have the binary interaction parameters, we predict the vapor composition using the original T–P–x data and eq 12. Last, we compute the percent difference in vapor-mole-fraction data vs prediction for each liquid-composition data point:

\[\text{percent deviation} = 100 \left(\frac{y_{calc} - y_{obsd}}{y_{obsd}} \right) \]

(16)

We plot the percent deviation vs the liquid mole fraction to characterize the consistency of the observed phase-equilibrium data.

3.1.2. Consistency Test Two: Wisniak.33 The second consistency test that we use, due to Wisniak, is based on the bubble-point equation for mixtures and utilizes the Clausius–Clapeyron equation. It is fundamentally based and preferable to a combined Redlich–Kister/Herington method35 for testing the consistency of isobaric phase-equilibrium data.

For each data point \(i \) at system temperature \(T_i \), we compute two functions \(L_i \) and \(W_i \):

\[L_i = \sum_k T_k x_k \Delta s_k^0 \frac{\Delta s}{\Delta s} - T_i \]

(17)

\[W_i = RT_i \left(\sum_k x_k \ln \gamma_k - w \right) \]

(18)

For every species \(k \), at the system pressure, there is a pure-component boiling point \(T_k^0 \), a liquid mole fraction \(x_k \), and entropy of vaporization \(\Delta s_k^0 \). In eq 18, \(\Delta s \) is the entropy of mixing of the mixture.

We compute the boiling temperature \(T_k^0 \) for each component \(k \) by setting the pressure to the system pressure in eq 13 and then backing out the temperature.

\[\Delta s_k^0 = \frac{\Delta h_k^0}{T_k^0} \]

(19)

The critical temperature \(T_{ck} \) as well as the constants \(A_k \) through \(D_k \) are tabulated in standard reference sources (such as Daubert and Danner36) and differ for each chemical species.

We find the activity coefficients from the experimental data using eq 12:

\[\gamma_i = P_i \chi_i P_{i,sat}(T) \]

(20)

We compute the mixture entropy of vaporization for the mixture \(\Delta s \) using the following mixing rule:

\[\Delta s = \sum x_k \Delta s_k^0 \]

(21)

Last, we find the \(w \) term appearing in eq 18 using

\[w = \sum x_k \ln (y_k/y_i) \]

(22)

We perform the point test by computing the ratio of \(L_i \) and \(W_i \) and plotting this as a function of liquid mole fraction. Inconsistent data contain ratio values that are much different than 1 and do not scatter randomly about 1.

3.1.3. Determining Binary Interaction Parameters from Phase-Equilibrium Data. The Van Ness et al. test32 effectively regresses binary interaction parameters using T–P–x data only. If the data are judged inconsistent, Prausnitz et al.37 suggest that we assume that the vapor-phase composition data are incorrect for two reasons:

(i) Accurately measuring \(y \) is typically more difficult than measuring \(x \) and pressure.

(ii) Composition data at the ends of the composition scale (\(y \sim 0 \) or 1) are likely to be the least accurate.

If the data are inconsistent and we throw out the vapor-mole-fraction measurements, then we have already obtained binary interaction parameters using the data that are most consistent in (T–P–x data). However, if the data are consistent, then we can use
all of the data to compute activity coefficients by eq 20 and re-regress the binary interaction parameters.

3.2. Characterizing the Ternary, Reactive System Water/Caprolactam/Nylon-6. By completing the first step of this study, section 3.1, we obtain the binary interaction parameters for the system water/caprolactam. We then simulate the Giori and Hayes experiments in order to characterize the binary interactions between water/nylon-6 and caprolactam/nylon-6 segments. We use POLYMERS PLUS to model the batch step-growth polymerizations. However, our methodology is applicable in any polymer process simulator because the kinetics and thermodynamics models are reproduced from open literature sources.

We simulate a 0.000 077 m³ (77 mL) reactor using the Arai et al. kinetic scheme and the binary interaction parameters for water/caprolactam. We maintain a vapor liquid system throughout the polymerization. After reaction equilibrium is reached in the closed vessel, we predict the final liquid and vapor compositions, as well as the final pressure. We give our simulation procedure below, with specifications given in Giori and Hayes.

1. Charge the batch reactor of a specified size with a specified amount of water and caprolactam.
2. Set the reactor to a specified temperature and enforce VLE using the POLYNRTL activity-coefficient model, thereby predicting the liquid–vapor composition and reactor pressure.
3. Allow the nylon-6 polymerization reaction to proceed until reaction equilibrium is established.
4. Report the final liquid and vapor compositions, as well as the final reactor pressure.

Because we only have five sets of batch reaction data from Giori and Hayes, we must minimize the number of free parameters in fitting the reaction data. We re-regress the bij parameters for water/nylon-6 and caprolactam/nylon-6 segment interactions. We fix the aij and cij parameters to zero.

We vary these four binary interaction parameters, two for each binary interaction, until we match the outlet compositions and pressures from the data of Giori and Hayes. The resulting binary interaction parameters characterize the systems, water/nylon-6 and caprolactam/nylon-6 segments.

4. Results and Discussion

4.1. Binary Interaction Parameters for Water/Caprolactam. Table 7 contains the pertinent physical property constants for water and caprolactam, found in Daubert and Danner. We need these parameters to compute the vapor pressure and enthalpy of vaporization.

Table 8 summarizes the regressed binary interaction parameters for water/caprolactam data sets (Wisniak test).

Figure 3 shows the results of the Van Ness et al. test for thermodynamic consistency: a plot of the percent error in vapor mole fraction vs liquid mole fraction for caprolactam.

Consistent data show small, randomly distributed errors around the x axis. Inconsistent data give large, nonrandomly distributed errors. It is clear from Figure 3 that all data sets are inconsistent.

Similarly, for the Wisniak test, we show a ratio plot in Figure 4.

Consistent data would reveal a ratio that is more-or-less 1 for each liquid-mole-fraction data point. However, all of the data show a bias, with the ratio being 2 or higher for all sets. This again suggests the presence of a systematic error in the phase-equilibrium data.

Unfortunately, consistent tests never tell us which data are not constant. As stated previously, we assume that the vapor-phase composition data are incorrect. Unfortunately, no error analysis was performed in the works of Maczinger and Tettamanti and Giori and Hayes.

Table 8 summarizes the regressed binary interaction parameters using only T–P–x data.

Figure 5 shows the plot of the POLYNRTL parameters r_{ij} vs temperature.
The POLYRTL model accurately correlates the phase-equilibrium data. Furthermore, assuming ideal behavior in the vapor and liquid phases gives nearly identical predictions. Therefore, we may safely neglect nonideality in water/caprolactam solutions under vacuum. This means that we can set the fugacity and activity coefficients to 1 when simulating water/caprolactam mixtures under vacuum conditions. However, as we shall see below, the ternary system water/caprolactam/nylon-6 shows moderate deviations from ideal behavior.

Table 8. Regression Results for POLYNRTL Binary Interaction Parameters for Water/Caprolactam (Based on T-P-x Data Only)

<table>
<thead>
<tr>
<th>POLYNRTL binary interaction parameter</th>
<th>Value (temperature units are K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{\text{water/CL}}$</td>
<td>-0.313</td>
</tr>
<tr>
<td>$b_{\text{CL/water}}$</td>
<td>0.628</td>
</tr>
<tr>
<td>$b_{\text{water/CL}}$</td>
<td>-15.4</td>
</tr>
<tr>
<td>$b_{\text{CL/water}}$</td>
<td>-13.7</td>
</tr>
<tr>
<td>$b_{\text{water/CL}}$</td>
<td>0.0495</td>
</tr>
<tr>
<td>$b_{\text{CL/water}}$</td>
<td>-0.0998</td>
</tr>
</tbody>
</table>

Table 9. Comparison of Model Predictions with Giori and Hayes Polymerization Data

<table>
<thead>
<tr>
<th>Model Prediction</th>
<th>caprolactam liquid mole fraction</th>
<th>water liquid mole fraction</th>
<th>water vapor mole fraction</th>
<th>total pressure (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>0.096</td>
<td>0.012</td>
<td>0.74</td>
<td>571 000</td>
</tr>
<tr>
<td></td>
<td>0.097</td>
<td>0.0249</td>
<td>0.85</td>
<td>974 000</td>
</tr>
<tr>
<td></td>
<td>0.099</td>
<td>0.0387</td>
<td>0.886</td>
<td>1 400 000</td>
</tr>
<tr>
<td></td>
<td>0.101</td>
<td>0.0515</td>
<td>0.89</td>
<td>1 830 000</td>
</tr>
<tr>
<td></td>
<td>0.106</td>
<td>0.065</td>
<td>0.91</td>
<td>2 160 000</td>
</tr>
<tr>
<td>Model Prediction</td>
<td>0.087</td>
<td>0.012</td>
<td>0.69</td>
<td>537 000</td>
</tr>
<tr>
<td></td>
<td>0.086</td>
<td>0.025</td>
<td>0.84</td>
<td>1 010 000</td>
</tr>
<tr>
<td></td>
<td>0.086</td>
<td>0.039</td>
<td>0.90</td>
<td>1 440 000</td>
</tr>
<tr>
<td></td>
<td>0.085</td>
<td>0.052</td>
<td>0.93</td>
<td>1 830 000</td>
</tr>
<tr>
<td></td>
<td>0.085</td>
<td>0.066</td>
<td>0.95</td>
<td>2 180 000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% Error</th>
<th>-9.38</th>
<th>0.00</th>
<th>-6.76</th>
<th>-6.02</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-11.34</td>
<td>0.40</td>
<td>-1.18</td>
<td>4.02</td>
</tr>
<tr>
<td></td>
<td>-13.13</td>
<td>0.78</td>
<td>1.58</td>
<td>3.25</td>
</tr>
<tr>
<td></td>
<td>-15.84</td>
<td>0.97</td>
<td>4.49</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>-19.81</td>
<td>1.54</td>
<td>4.40</td>
<td>0.99</td>
</tr>
</tbody>
</table>

The binary interaction parameters are $b_{\text{water/nylon-6 segment}} = 297$, $b_{\text{nylon-6 segment/water}} = -601$, $b_{\text{caprolactam/nylon-6 segment}} = 265$, and $b_{\text{nylon-6 segment/caprolactam}} = 207$ (temperature units in K).

The average model prediction error for water composition is 0.74%. Note that we are most interested in this composition because it significantly impacts the final polymer properties, such as polymer molecular weight and conversion. The model underpredicts the final caprolactam liquid composition by about 13.9%. The average error for the final pressure prediction is −0.51%.

Table 10 compares the Giori and Hayes data with the three previous literature models, along with ideal vapor–liquid predictions (fugacity–activity coefficients equal 1).

The J acobs–Schweigman model is ill-applied; system pressures for the Giori and Hayes data range from 5 to 21 atm. The predictions for this model are about an order of magnitude different from the experimental data. This unacceptable level of error illustrates the inappropriateness of the J acobs–Schweigman model for modeling general phase equilibrium.

The Fukumoto model predictions are the best out of the three literature models; the average error is −31%. The Tai et al. model is surprisingly inaccurate, given that it is the most advanced out of the three. The average error of the Tai et al. model is 317%. Lastly, neglecting nonideality results in water liquid composition errors of 7.52%. Because water-concentration terms in the kinetic expressions are proportional to water mole fractions in the liquid phase, we can expect that this error would cause errors of ca. 8% when computing reaction-rate terms. A likely explanation as to why ideal behavior approximates the Giori and Hayes data is that the excess Gibbs energy of mixing is low when the

![Figure 5](https://example.com/figure5.png)
Figure 5. Predicted value of the POLYNRTL binary parameter τ_{ij} for water/caprolactam and caprolactam/water.

![Figure 6](https://example.com/figure6.png)
Figure 6. Water/caprolactam T–x–y diagram. The solid lines represent the POLYNRTL activity coefficient model predictions for the liquid mole fraction, while the dotted lines represent the POLYNRTL activity coefficient model predictions for the vapor mole fraction.
composition is at extreme values (the polymer fraction is near 0 or 1).

By way of comparison, our new phase-equilibrium model generates an average prediction error for the water liquid mole fraction of 1%. More importantly, it allows us to make phase-equilibrium predictions in any binary or ternary mixture that primarily contains water, caprolactam, and nylon-6 at any specified temperature and pressure.

We note that we do not have enough batch reaction data to determine a unique set of binary interaction parameters for water/nylon-6 and caprolactam/nylon-6 segments. Therefore, we have regressed the minimum number of binary interaction parameters possible, setting a_{ij} and c_{ij} to zero and only regressing b_{ij}. The fit to the available data is good; however, because of the limited data, we caution against extrapolation far away from 270 °C and outside of the pressure range of 570–2200 kPa.

5. Validation of Regressed Binary Interaction Parameters

We consider two model predictions to be good indicators of the quality of our binary interaction parameters: condenser performance and devolatilization in finishing reactors. Here, we perform exploratory simulations of a commercial condenser and two wiped-film evaporators.

We start with the analysis of the condenser. The feed contains a mixture of caprolactam and water. The condenser operates at a temperature of 483 K and a pressure of 53 kPa. When we simulate the condenser as a single flash unit, we get predictions for the liquid and vapor stream flow rates. Figure 7 compares our predictions with plant experience.

The vapor-phase flow rates of caprolactam and water are predicted with an average error of about 4%. The model underpredicts the liquid-phase component flow rates of caprolactam and water by about 9%.

It is significant to note the split fractions: the data show that about 49% of the caprolactam is vaporized, while 99% of the water is vaporized. Our phase-equilibrium predictions nearly match the data, showing 53% for caprolactam vaporization and 99% for water vaporization.

In our model of the first wiped-film evaporator, we simulate a vapor-liquid plug-flow reactor, with a feed stream containing 2.00×10^{-3} parts by weight water, 1.54×10^{-1} parts caprolactam, and 8.44×10^{-2} parts semiterminated nylon-6. The molecular weight of the incoming polymer is 11.5 kg/mol. The reactor is operating at ca. 520 K and 4 kPa with a residence time of 600 s.

By way of validation, we are looking at the devolatilization behavior of small molecules, namely, caprolactam. From prior experience, we know that devolatilization of caprolactam is mass-transfer-limited. Therefore, if we ignore mass-transfer limitations in the model, we should devolatilize too much caprolactam and therefore underpredict the mass fraction of caprolactam in the exiting melt stream.

Our model predicts a caprolactam mass fraction in the exit stream of 1.1%, while plant data show 2.9% for similar operating conditions. This is an underprediction by 62%. This shows that our phase-equilibrium predictions are in the right direction considering mass-transfer limitations. What would not be reasonable is an equilibrium prediction for the caprolactam percentage that is actually more than the mass-transfer-limited case. Regarding the caprolactam mass percentage in the exiting melt, the equilibrium case should always be lower than the mass-transfer-limited case.

Now we simulate a second wiped-film evaporator. Once again, we consider a vapor-liquid plug-flow reactor, with a feed stream containing 2.41×10^{-3} parts by weight water, 1.4×10^{-2} parts caprolactam, and 8.58 parts caprolactam and nylon-6 at any specified temperature and pressure.

Table 10. Predictions for Liquid-Phase Water Mole Fractions of Previous Literature Models and the Ideal Model and Comparison with Experimental Data of Giori and Hayes

<table>
<thead>
<tr>
<th>Liquid-phase water mole-fraction data</th>
<th>Jacobs–Schweigman20</th>
<th>Fukumoto21</th>
<th>Tai et al.12</th>
<th>Ideal (fugacity and activity coefficients set to 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0119</td>
<td>0.0014</td>
<td>0.0101</td>
<td>0.0607</td>
<td>0.0129</td>
</tr>
<tr>
<td>0.0249</td>
<td>0.0014</td>
<td>0.0181</td>
<td>0.1100</td>
<td>0.0269</td>
</tr>
<tr>
<td>0.0387</td>
<td>0.0014</td>
<td>0.0248</td>
<td>0.1509</td>
<td>0.0411</td>
</tr>
<tr>
<td>0.0515</td>
<td>0.0014</td>
<td>0.0323</td>
<td>0.1974</td>
<td>0.0554</td>
</tr>
<tr>
<td>0.0650</td>
<td>0.0014</td>
<td>0.0382</td>
<td>0.2338</td>
<td>0.0698</td>
</tr>
</tbody>
</table>

Figure 7. Mass flow rates exiting the condenser: model predictions vs plant experience (all values have been normalized using the largest flow rate).

production trains, and the model predicts a caprolactam mass fraction in the exit stream of 1.5%, while plant data show 2.7% for similar operating conditions. This is an underprediction by 44%. This again shows that our phase-equilibrium calculations are in the right direction considering mass-transfer limitations.

Regarding the wiped-wall evaporator studies, one may ask the following valid question: may we approximate the error of the phase-equilibrium model from these results, as in the condenser study? Unfortunately, this is not possible because we do not know to what extent mass-transfer limitations are affecting the reactor performance. In other words, if there is no mass-transfer limitation, the phase-equilibrium model is in error by -62 to -44%. If there is a strong mass-transfer limitation, then the phase-equilibrium model may have little or no error.

6. Simulating Integrated Industrial Nyon-6 Production Trains

Previous attempts at nylon-6 integrated process modeling were hindered by the lack of a fundamental thermodynamic phase-equilibrium model. For example, Nagasubramanian and Reimschuessel simulated the molecular weight buildup in the finishing stage by first “instantaneously” removing all water from the polymerization mass while ignoring caprolactam devolatilization. There is no corresponding unit operation that can perform this separation in an actual plant. Furthermore, this assumption has led Tirrell et al. to an unusual conclusion: that it is preferable to perform molecular weight buildup and monomer conversion in a single reactor. To have adequate molecular weight buildup, we need to enforce low water concentrations. However, to do this, we typically use severe operating conditions, such as high vacuum in melt processes, to remove most of the water. In doing so, we cannot avoid losing a significant amount of the caprolactam to the vapor phase. Therefore, equilibrium thermodynamics clearly suggests that it is impractical to try to obtain both molecular weight buildup and monomer conversion in the same reactor.

Assuming an instantaneous and complete water removal was necessary in the past because researchers did not have access to a fundamental thermodynamic model. However, with our new phase-equilibrium model, we are able to simulate any unit operation that involves caprolactam, water, and nylon-6 at multiphase conditions. These include flash units and condensers. Therefore, we simulate multiphase reactors with condensers that return unreacted monomer back to the inlet of the train. In particular, we simulate two commercial technologies: a melt train and a bubble-gas kettle train. All details such as the unit operation configuration, feed conditions, and operating conditions are available in the patent literature.

This section is not concerned with developing a validated simulation model for these processes; this endeavor is well beyond the scope of this paper. Therefore, we do not make detailed comparisons between model predictions and plant data. We wish only to illustrate the utility of our phase-equilibrium model in simulating entire manufacturing trains.

6.1. Melt Train. We simulate a typical commercial melt train involving four reactors. The first two reactors carry out monomer conversion; the third and fourth reactors carry out devolatilization and molecular weight buildup. Figure 8 shows the process-flow diagram for this train.

The makeup stream contains 5.35 \times 10^{-5} kg/s of water, 0.0120 kg/s of caprolactam, and 2.01 \times 10^{-5} kg/s of AA terminator. We have assumed a production rate of about 0.0112 kg/s of polymer or 89 pounds per hour (pph) and have calculated approximate flow rates for water and terminator based on refs 10 and 41–44.

The first vessel is a continuous stirred-tank reactor (CSTR), STAGE-1 in Figure 8. The residence time is 8100 s, the temperature is 488 K, and the pressure is 545 kPa.

The second vessel is a plug-flow reactor (PFR), STAGE-2 in Figure 8. The feed to this vessel enters a vapor headspace, which we simulate using a flash unit (FLASH in Figure 8). The vapor phase is removed via a vacuum system (VACUUM in Figure 8) and enters the train condenser CONDENSE. This reactor has a residence time of 1200 s, a temperature of 523 K, and a pressure of 4 kPa.

The third reactor is a vapor–liquid plug-flow reactor, FINISHER in Figure 8. The vapor phase is removed via a vacuum system (VACUUM in Figure 8) and enters the train condenser CONDENSE. This reactor has a residence time of 1050 s, a temperature of 523 K, and a pressure of 4 kPa.

The train condenser CONDENSE recovers the unreacted monomer and sends it back to the inlet of the train. Uncondensed species, mostly water, leave in a waste stream. The condenser operates at an assumed pressure of 101.325 kPa and an assumed temperature of 403 K.

Table 11 summarizes the vessel operating conditions. We model mass-transfer limitations in the evaporator and finisher reactors using two-film diffusion theory. The diffusion coefficient is relatively high for water in nylon-6 melts, and we assume that the evaporator and finisher reactors generate a large interfacial surface area. Therefore, we set the water mass-transfer coefficient to 1 \times 10^{-2} m/s and set the mass-transfer coefficient for caprolactam to 5 \times 10^{-4} m/s.

Table 12 shows the predicted mass flow rates for water, caprolactam, cyclic dimer, and nylon-6 exiting each reactor. Furthermore, the table reports number-average molecular weight predictions (Mn).

We see that all of the monomer conversion (about 81% in this case) takes place in the first two reactors. However, because of elevated moisture levels, the molecular weight only grows to about 10.7 kg/mol. In the third and fourth reactors, we remove nearly all of the water and double the polymer molecular weight. Our final molten polymer product has a flow rate of 1.16 \times 10^{-2} kg/s, the polymer has a number-average molecular weight of about 10.7 kg/mol. In the third and fourth reactors, we remove nearly all of the water and double the polymer molecular weight. Our final molten polymer product has a flow rate of 1.16 \times 10^{-2} kg/s, the polymer has a number-average molecular weight of about 10.7 kg/mol.
weight of 18.3 kg/mol, and the caprolactam content is about 1.6%. The molecular weight prediction is close to plant experience of melt trains, about 18 kg/mol. The caprolactam content is also close: plant experience ranges from 0.7 to 1.5%.

Additional predictions now follow: 2.44 \times 10^{-4} \frac{kg}{s}, or 85%, of the incoming water is lost to the vapor phase in the second reactor, while virtually all of the water is vaporized in the third reactor. Almost no caprolactam is lost in the second reactor because of the presence of the reflux condenser; however, about 2.83 \times 10^{-3} \frac{kg}{s} of monomer is devolatilized in the third and fourth reactors (36% of incoming caprolactam). Previous analyses, such as those by Nagasubramanian and Reimschuessel39 and by Tirrell et al.,40 would assume that no water is lost in the first two vessels (approximated roughly by one vessel in their studies) and no caprolactam is lost in the third and fourth vessels (approximated roughly by one vessel in their studies). Our simulation, which contains phase-equilibrium and mass-transfer models, shows that these are poor assumptions for a typical commercial melt train.

6.2. Bubble-Gas Kettle Train. We now simulate a typical commercial bubble-gas kettle train.13 This train has three agitated kettles as in Figure 9.

A total of 2.08 \times 10^{-3} \frac{kg}{s} of caprolactam enters the first vessel, along with 7.73 \times 10^{-4} \frac{kg}{s} of steam. We model the first kettle, KETTLE1 in Figure 9, as a vapor-liquid CSTR with exit liquid and vapor streams. Steam and lactam are fed to this reactor. This kettle operates at 527 K and 579 kPa. This kettle has a residence time of 9300 s.

We assume that the second kettle, KETTLE2 in Figure 9, is mass-transfer-limited. We again model it as a multiphase CSTR utilizing two-film theory to compute the evaporation rate of volatiles. A total of 4.91 \times 10^{-5} \frac{kg}{s} of inert gas (assumed to be nitrogen) is bubbled through the reaction mixture to remove volatiles. We assume that the mass-transfer coefficients are 1 and 1 \times 10^{-4} m/s for water and caprolactam, respectively. This kettle has a residence time of 13 400 s, a temperature of 528 K, and a pressure of 101.325 kPa.

Table 11. Operating Conditions for Each Reactor in the Four-Reactor Train Depicted in Figure 8

<table>
<thead>
<tr>
<th>Reactor</th>
<th>Temp (K)</th>
<th>Pressure (kPa)</th>
<th>Residence Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First reactor</td>
<td>488</td>
<td>545</td>
<td>8100</td>
</tr>
<tr>
<td>Reflux condenser</td>
<td>403</td>
<td>66.7</td>
<td>28800</td>
</tr>
<tr>
<td>Third reactor</td>
<td>523</td>
<td>2.33</td>
<td>1200</td>
</tr>
<tr>
<td>Fourth reactor</td>
<td>536</td>
<td>4.00</td>
<td>7200</td>
</tr>
<tr>
<td>Train condenser</td>
<td>403</td>
<td>101.325</td>
<td></td>
</tr>
</tbody>
</table>

Table 12. Model Predictions for Liquid-Phase Mass Flow Rates Exiting Each Reactor (Process Flow Diagram in Figure 8)

<table>
<thead>
<tr>
<th>Reactor</th>
<th>Caprolactam (kg/s)</th>
<th>Water (kg/s)</th>
<th>Cyclic Dimer (kg/s)</th>
<th>Nylon-6 (kg/s)</th>
<th>Mn (kg/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.85 \times 10^{-4}</td>
<td>9.36 \times 10^{-3}</td>
<td>7.39 \times 10^{-6}</td>
<td>5.34 \times 10^{-3}</td>
<td>2.9</td>
</tr>
<tr>
<td>2</td>
<td>5.71 \times 10^{-5}</td>
<td>2.81 \times 10^{-3}</td>
<td>2.73 \times 10^{-5}</td>
<td>1.19 \times 10^{-2}</td>
<td>10.7</td>
</tr>
<tr>
<td>3</td>
<td>3.10 \times 10^{-7}</td>
<td>1.69 \times 10^{-3}</td>
<td>2.87 \times 10^{-5}</td>
<td>1.20 \times 10^{-2}</td>
<td>11.7</td>
</tr>
<tr>
<td>4</td>
<td>1.25 \times 10^{-6}</td>
<td>1.92 \times 10^{-4}</td>
<td>4.21 \times 10^{-5}</td>
<td>1.16 \times 10^{-2}</td>
<td>18.3</td>
</tr>
</tbody>
</table>
The third kettle, KETTLE3 in Figure 9, is identical to the second kettle regarding operating conditions.

Table 13 summarizes the vessel operating conditions.

Table 14 shows the liquid-phase flow rates, compositions, and polymer molecular weights coming out of each kettle.

With this train, we produce 1.69 × 10^{-3} kg/s of nylon (81% conversion), with 10% caprolactam coming out of the third kettle. The molecular weight of the polymer is 20.6 kg/mol. Both the caprolactam content and molecular weight predictions are close to plant experience of bubble-gas kettle trains: about 9% and 21 kg/mol for caprolactam and molecular weight, respectively.

In the first kettle, 75% of the incoming water exits in the vapor stream, along with 4% of the incoming caprolactam. In the second kettle, the corresponding percentages are 98% and 18%, respectively. Lastly, the third kettle devolatilizes 80% of the incoming water and 34% of the incoming caprolactam.

This example again shows that an incomplete devolatilization based on a more detailed analysis of the phase equilibrium is more realistic. Using the previous assumptions regarding nylon phase behavior would have resulted in severe prediction inaccuracies.

6.3. Example Summary. These two applications illustrate that we are no longer bound by unrealistic assumptions, such as no or instantaneous water removal, while ignoring caprolactam devolatilization. In fact, we obtain a high level of detail in our simulations, including an analysis of the monomer-recovery portion that exists for every realistic manufacturing process. This high level of modeling detail is possible using our fundamental phase-equilibrium model for water/caprolactam/nylon-6.

7. Conclusions

We have advanced nylon-6 process-simulation technology by developing and documenting a fundamental phase-equilibrium model. It represents a step forward toward the generation of a single, consistent model that describes the phase behavior of all commercially significant nylon polymerization—depolymerization technologies.

In creating this model, we use phase-equilibrium data to characterize the ternary system, water/caprolactam/nylon-6. We illustrate adequate treatment for inconsistent thermodynamic data, including the generation of a coherent set of POLYNRTL binary interaction parameters. We then show how to simulate the reactive system, water/caprolactam/nylon-6, to extract binary interaction parameters for water/nylon-6 and caprolactam/nylon-6 segments. Our model predicts the liquid mole fraction of water with an average error of 1%; previous literature models sometimes generate predictions that are more than an order of magnitude in error.

After generating a complete model for the phase equilibrium for water/caprolactam/nylon-6, we validate the interaction parameters by performing exploratory simulations of commercial manufacturing processes. We simulate a condenser and match the split fraction for water (99%). We predict a caprolactam split fraction of 53%, which approximates the real split fraction of 49%.

We also simulate two commercial wiped-film evaporators and show that the models underpredict the mass fraction of caprolactam in the exit polymer stream. This is in accordance with expectations: we did not simulate mass-transfer limitations and, therefore, the amount of caprolactam predicted to be in the liquid phase should be low when compared with plant data.

Last, we demonstrate two applications of our new phase-equilibrium model that simulate two integrated nylon-6 production processes: a melt train and a bubble-gas kettle train. We simulate wide ranges of temperature and pressure conditions, with temperature ranging from 403 to 536 K and pressure ranging from 2.33 to 545 kPa. We perform fundamental kinetic, thermodynamic, and mass-transfer calculations to make detailed predictions.
Acknowledgment

We thank Alliant Techsystems, Aspen Technology (particularly, Jila Mahalec, past Director of Worldwide University Programs; Dustin MacNeil, current Director of Worldwide University Programs; Joseph Boston, Chairman of Worldwide University Programs; and Larry Evans, Board Chairman), China Petroleum and Chemical Corp., Honeywell Specialty Materials, and Honeywell International for supporting the computer-aided design educational programs at Virginia Tech. We also thank Paul Mathias, David Tremblay, and Yuhua Song, Polymer Industry Business Unit, Aspen Technology, for their helpful input to this study.

Supporting Information Available: Tables of phase-equilibrium data of the system water/caprolactam at various pressures and of the system water/caprolactam/nylon-6. This material is available free of charge via the Internet at http://pubs.acs.org.

Nomenclature

\[a_i = \text{binary interaction parameter coefficient for the binary } i-j \]
\[A_{ij}^0 = \text{preexponential factor for uncatalyzed forward reaction } i, \text{ kmol}^{-1} \text{ mol}^{-1} \text{ L} \text{ s}^{-1} \]
\[A_{ij} = \text{preexponential factor for catalyzed forward reaction } i, \text{ kmol}^{-1} \text{ mol}^{-1} \text{ L} \text{ s}^{-1} \]
\[b_{ij} = \text{binary interaction parameter coefficient for the binary } i-j, \text{ K} \]
\[c_{ij} = \text{binary interaction parameter coefficient for the binary } i-j, \text{ K} \]
\[E_i^0 = \text{activation energy for uncatalyzed forward reaction } i, \text{ J mol}^{-1} \]
\[E_i^f = \text{activation energy for catalyzed forward reaction } i, \text{ J mol}^{-1} \]
\[\Delta H_i = \text{enthalpy of reaction } i, \text{ J mol}^{-1} \]
\[K' = \text{equilibrium constant for reaction } i \]
\[k_i = \text{forward rate constant for reaction } i, \text{ kmol}^{-1} \text{ mol}^{-1} \text{ s}^{-1} \]
\[k_i' = \text{reverse rate constant for reaction } i, \text{ kmol}^{-1} \text{ mol}^{-1} \text{ s}^{-1} \]
\[L = \text{Wisniak consistency test function} \]
\[n = \text{degree of polymerization} \]
\[P = \text{pressure, Pa} \]
\[P_i = \text{partial pressure of species } i, \text{ Pa} \]
\[P_{\text{vap}} = \text{vapor pressure for species } i, \text{ Pa} \]
\[R = \text{ideal gas law constant}, \text{ J mol}^{-1} \text{ K}^{-1} \]
\[\Delta S_i = \text{entropy of reaction } i, \text{ J mol}^{-1} \text{ K}^{-1} \]
\[T = \text{temperature, K} \]
\[T^0_i = \text{boiling point for component } i, \text{ K} \]
\[w = \text{Wisniak consistency test function} \]
\[W = \text{Wisniak consistency test function} \]
\[x_i = \text{liquid-phase mole fraction of species } i \]
\[y_i = \text{vapor-phase mole fraction of species } i \]
\[\alpha_{ij} = \text{POLYNRTL nonrandomness factor for the binary } i-j \]
\[\gamma_i = \text{activity coefficient for species } i \]
\[\Delta H_i^0 = \text{enthalpy of vaporization at the boiling point for component } i, \text{ J mol}^{-1} \]
\[\Delta S = \text{mixture entropy of vaporization, J mol}^{-1} \text{ K}^{-1} \]
\[\Delta S_{ij} = \text{entropy of vaporization at the boiling point for component } i, \text{ J mol}^{-1} \text{ K}^{-1} \]
\[r_{ij} = \text{POLYNRTL binary interaction parameter for the binary } i-j \]

Literature Cited

Received for review February 6, 2003
Revised manuscript received June 9, 2003
Accepted June 10, 2003