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In recent literature the application of the ideal mixed 
suspension, mixed product removal (MSMPR) crystallizer 
concept to the analysis of crystal size distribution (CSD) 
data obtained from experimental or plant crystallizers 
has been considered. Several excellent reviews are avail- 
able. Notable have been the works of Randolph (1965), 
Randolph and Larson ( 1971), Canning ( 1970), Nyvlt 
( 1969, 1971), and Mullin (1972). Examination of previ- 
ous work shows that there still exist many unsolved prob- 
lems between the various model-oriented interpretations 
and the actual population density CSD data. There has 
been criticism of these interpretations from industrial 
workers as “giving little insight to the actual mechanism” 
to the real crystallization process involved (Canning, 
1970). In addition, many possible combinations of these 
specific interpretations, such as size-dependent growth 
rate (Abegg et al., 1968; Bransom, 1960; Canning and 
Randolph, 1967; and Margolis et al., 1971), size-de- 
pendent supersaturation (Estrin, et al., 1969), size-de- 
pendent residence time (Randolph and Larson, 1971), 
and crystal breakage (Rosen and Hulburt, 1971) can 
apparently fit the same population density CSD data. 
A typical example is the case of CSD data showing linear 
sections of different slopes in a semi-log population density 
distribution plot, In n( L )  versus L. 

In this note, several different interpretations of popula- 
tion density CSD data from crystallizers are re-examined. 
The crystal size intensity function (CSIF) concept as 
suggested by the analogous residence time intensity func- 
tion of Noar and Shinnar (1963) is introduced. I t  is 
suggested that this CSIF can be conveniently used to- 
gether with the population density distribution function 
developed by Randolph and Larson (1962) in the analy- 
sis of CSD data. It makes a distinction among different 
possible mechanisms leading to similar CSD plots and 
gives better understanding of implications of previous 
publications. Certain new insights to clarify the apparent 
anomalies existing in previous interpretations are also 
discussed. 

CRYSTAL SIZE INTENSITY FUNCTION 

It  has been shown that steady state crystal size dis- 
tributions from a continuous MSMPR crystallizer for a 
number of systems satisfy the solution of the population 
balance equation (Randolph and Larson, 1962) 

For the case of size-independent growth rate, (1) be- 
comes 

(2) 

The simplifying assumptions incorporated in the develop- 
ment of these expressions are well known (Randolph and 
Larson, 1962 and 1971). The physical meaning of n(L )  
is as follows: n(L)dL represents the total number of 
crystal particles of all possible sizes in a unit volume of 
slurry in the crystallizer that will leave the unit volume 
of slurry within a particle size between L and (I, + dL). 
If, alternatively, n ( L )  is considered as a properly nor- 
malized probability density distribution function, then, on 
viewing crystal particles with all possible sizes which 
have just entered the unit volume of slurry with a par- 
ticle size between L and ( L  + d L )  is equal to n ( L ) d L .  
Thus, the population density distribution function n ( L )  
characterizes the CSD for all possible particle sizes. 

Consider now a situation where knowledge ahout the 
CSD and its related probability information for crystal 
particles of a specific size is desired. For example, when 
a selective fines trap is added to a continuous MSMPR 
crystallizer (Nauman, 1971), knowledge about crystal 
particles with the specific fines destruction size is par- 
ticularly important. In this case, a more general problem 
may be posed: suppose crystal particles with a specific 
size L have already stayed in a unit volume of slurry 
in the crystallizer, one desires to know the probability of 
their leaving the unit volume of slurry within the next 
size increment d L  after growth. Let this conditional prob- 

n = no exp[ - L/rT]  
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ability be denoted by A ( L )  dL. The specification to the 
latter can be obtained simply from the Bayes rule in 
probability. Thus the probability n ( L )  dL is the product 
of two other terms: (1) the probability of the crystal 
particles of all possible sizes not leaving the unit volume 
of slurry with a particle size L or less; ( 2 )  the probability 
of their leaving the unit volume of slurry with a particle 
size between L and ( L  + d L ) ,  that is, h ( L ) d L .  For the 
simple case of size-independent growth rate in a continu- 
ous MSMPR crystallizer, such a Bayes rule, can be written 
as 

or 
Q n ( L ) d L  = [ V n ( L ) r ]  [ h ( L ) d L ]  

1 

(3) 

From (1) and ( 3 ) ,  it is noted that h ( L )  is related to 
the well-known slope - 1/rT of the population density 
plot, In n ( L )  versus L, the possibility of using A ( L )  to- 
gether with n ( L )  in interpreting CSD data from crystal- 
lizers is apparent. This conditional probability distribu- 
tion function h ( L )  is actually known as the intensity 
function in statistics (Gumbel, 1958, p. 20) and the 
analogous concept in the framework of residence time 
distribution theory has been introduced earlier by Noar 
and Shinnar (1963). The latter has been discussed in 
detail by Himmelblau and Bischoff (1968). Except in the 
work of Han and Shinnar (1968) where the related resi- 
dence time intensity function concept was used to study 
the steady state behavior of crystallizers with classified 
product removal, however, there has been apparently no 
attempt in the literature to apply this CSIF concept to 
crystallization problems. I t  is thus worthwhile to consider 
more clearly the theoretical significance and experimental 
implications of this proposed CSIF h ( L )  in interpreting 
population density data from crystallizers. 

It is known in statistics that there exists a unique rela- 
tionship between the population density distribution func- 
tion n ( L )  and the CSIF A ( L )  defined by (Gumbel, 1958, 
p. 20) 

1 - [ n ( L ) d L  = exp [ - A(L’ )dL’ ]  

or 
L 

n ( L )  = A ( L )  exp [ - A ( L ’ ) d L ’ ]  ( 4 )  

Thus, (1) and (4 )  indicate that in a population density 
CSD plot, In(L) versus L, the intercept of the plot gives 
the CSIF for crystal particles of size L, h ( L ) ,  while the 
slope of the plot gives a measure of the average CSIF 
A T )  over the size interval 0 to L, that is, 

[ [intercept] = h ( L )  
(5) 

As defined, the CSIF A (  L )  gives the escaping probability 
of crystal particles with a specific size L within the next 
size increment dL in a unit volume of slurry in a crystal- 
lizer. (5) suggests that by considering the whole possible 
size interval of crystal particles as a sequence of size 
increments, the comparison of A ( L )  and A ( L )  obtained 
from the population density plot will yield a more natural 
indication of possible mechanisms leading to the deviation 
from the ideal exponential population density distribution 
behavior suggested by the McCabe’s delta L law. The 
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latter ideal case is indeed as expected since both h ( L )  
and A ( L )  are independent of particle size and equal to 
l / r T  from (2)  and (3 ) .  In the general case, as h ( L )  may 
depend explicitly on particle size or implicitly through 
the effects of diffusional process, flow configuration, kinetic 
process, etc., it is thus not surprising to note that so many 
model-oriented interpretations can apparently fit the same 
population density CSD data. In the following, a number 
of such interpretations taken from the literature are dis- 
cussed. Special attention is devoted to demonstrating the 
advantages of using both n ( L )  and A ( L )  together in the 
analysis of CSD data. 

- 

EXAMPLES 

Size-Dependent Growth Rote 

et al. (1968), 
For the size-dependent growth rate expression of Abegg 

r = rOP(L) ( 6 )  

= r O ( l + y L ) b  b < l  LkO (7 )  
and defining 

( 1) gives 

where P ( X )  = (1 + or lX)b .  Thus, (5) can be written as 

- (1 + c u 1 X ) l - b  - 1 
q (1  - b ) X  h ( X )  =- (11) 

This explicit dependence of escaping probability of crys- 
tal particles on the particle size is therefore consistent 
with the resulting curved population density plot. A possi- 
ble physical mechanism leading to such a size-dependent 
growth behavior has recently been discussed in the work 
of Lieb and Osmers (1973). These authors study the 
effects of diffusive mass transfer on the CSD in a con- 
tinuous, MSMPR crystallizer. In all cases examined, the 
growth rate can be expressed in the form of (6) ,  with 
P (  L )  being the quotient of two size-dependent functions 
representing the effects of mass transfer limitation. When 
the diffusional effect is not extremely significant, the size 
dependence of the denominator in the quotient is found 
to be usually higher than that of the numerator. This 
implies that there exist local maxima in both curves of 
n ( L )  and A ( L ) ,  thus permitting an easy identification 
of such behavior. 

A special case of the growth rate model (7) when 
b = 0 is of particular interest. (9) gives the dimensionless 
form of the classical population density distribution func- 
tion in the ideal, continuous MSMPR crystallizer, 

y = exp [- X ]  (12) 

and the corresponding intensity functions, (10) and (11) , 
are 

A ( X )  = A ( X )  = constant = 1 (13) 

The constancy of the escaping tendency for crystal parti- 
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cles of all possible sizes in the given slurry in the crystal- 
lizer represented by such CSIF's results in the well-known 
linear population density plot. 

As an intermediate between the above two cases, con- 
sider the recent experimental results of Margolis et al. 
( 1971). These authors observed curved population den- 
sity distribution behavior for the small particle size in- 
terval in the population density plot of the study of 
crystallization of ice in a continuous MSMPR crystallizer. 
Such behavior was postulated as a result of the size- 
dependent growth rate. However, for large particle sizes, 
their data indicated the ideal, exponential population 
density distribution. The population density distribution 
functions were given by 

n =  1 

(14) shows that in most cases the analytical form of the 
crystal size intensity function for describing the nonideal 
population density distribution behavior may not be easily 
obtained. However, an understanding of the CSIF con- 
cept and its implications on interpreting population den- 
sity data will be very useful in the analysis of CSD data. 
The next example will thus indicate how the CSIF con- 
cept can give clear a priori knowledge about the resulting 
population density distribution behavior for a specific crys- 
tallization system without any mathematical complica- 
tions. 

Crystal Breakage 

Consider the kinetic model of crystallization of potas- 
sium sulfate including the effect of crystal breakage pro- 
posed by Rosen and Hulburt (1971). These authors as- 
sume crystals grow until they reach some critical 
characteristic particle size X ,  at which they become strong 
enough to withstand the possibility of breakage, and thus 
breakage occurs only in some of the crystals with sizes 
smaller than X,. It  is further assumed that probabilities of 
breakage for such crystals are the same and the growth 
rate of crystals is independent of particle size. It is then 
expected that the CSIF A ( X )  for X 5 X ,  is given by ( 13) 
due to the constant growth rate without crystal breakage 
as in the case of the ideal MSMPR crystallizer. For X < 
X,, the postulated constant and identical escaping prob- 
ability for crystals in a given slurry due to breakage 
events adds to the constant escaping probability of the 
crystals due to the size-independent growth process. Thus, 
this kinetic model implies a population density plot with 
two linear sections. The difference between slopes of these 
two straight lines will give a measure of the average CSIF 
due to breakage events only. In fact, the population 
density distribution functions given by these authors 

L o L L < L c  (16) 

1 
can be written as 

L, 4 L (17) 

0 x < xo (18) 

exPC- XI X , & X  (20) 

exp[- (1+p)X]  X O ~ X X X ~  (19) 

where 

/ I e x p  TTVO [ '1 ] Lo"L<L,  

(18) to (20) obviously confirm the above intuitive con- 
clusion based on the crystal size intensity fuiiction con- 
cept. The parameter /3 denoting the breakage contribution 
of the escaping probability can be determined experi- 
mentally for such a specific kinetic model. It should be 
emphasized, however, that the form of the population 
density distribution function, ( 18) to (20),  has essen- 
tially been obtained simply a priori by the intuitive CSIF 
concept; while in the original work of Rosen arid Hulburt 
( 1971), it was derived by lengthy mathematicd manipu- 
lations using Laplace transforms. 

Size-Dependent Supersaturotion or Residence-Time 

is interesting to note, however, that other model- 
oriented interpretations of population density CSD data 
based on size-dependent supersaturation (Estrin, et al., 
1969), size-dependent residence time (Canning, 1970; 
Randolph and Larson, 1971; Nauman, 1971; Nauman and 
Szabo, 1971), etc., would imply a similar popuhtion den- 
sity plot of linear sections with different slopes as repre- 
sented by (18) to (20) .  For example, the Equation (5) 
in the paper of Estrin et al. can be written as 

It  

O L X < X O  exp c- X I  

exp [- ( X  - X O ) ]  X O L X  
(21) v = {  

where 

O L L < L o  

X =  

0 4 L < L o  

(21) isintheformof (18) to (20). 
The existence of such apparent anomalies calls atten- 

tion to further studies of the effects of diffusional process, 
flow configuration, kinetic process, etc., on the CSD. The 
usual macroscopic approach based only on the population 
density distribution function n ( L )  gives little insight to 
the real mechanism leading to the deviation from the ideal 
exponential population density distribution behalrior ob- 
served in a continuous, MSMPR crystallizer. The intro- 
duction of the CSIF, h ( L ) ,  does, however, provide an 
additional conceptual basis for interpreting population 
density data from crystallizers. This is particularly true 
when the deviation from the ideal population density dis- 
tribution behavior is due to the existence of size-de- 
pendent residence time such as the international or un- 
intentional fines dissolution, stagnant zones, dead corners 
or bypassing in the crystallizer. By following the similar 
procedures well established in the residence time distribu- 
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tion theory (Himmelblau and Bischoff, 1968, p. 71; Noar 
and Shinnar, 1963), the use of the CSIF concept makes a 
distinction among possible mechanisms leading to these 
cases very simply. It is unfortunate, however, that this 
useful idea has apparently not been used before in crystal- 
lization practice. 

CONCLUDING REMARKS 

Although the intensity function concept is not new in 
the chemical engineering literature, this note has dem- 
onstrated for the first time the theoretical significance and 
experimental implications of the CSIF concept in the 
analysis of CSD data. The effects of kinetic process, flow 
configuration, diffusional process, particle breakage, etc., 
on the CSD have been considered within the same frame- 
work of the unifying CSIF concept. The illustrative ex- 
amples have indicated that the CSIF concept allows 
physical insights into both a priori formulation and a 
posteriori interpretation of population density distribution 
functions. These results suggest that it is reasonable to 
point out the recent argument in interpreting the nonideal 
population density distribution behavior by either a size- 
dependent growth rate model or a size-dependent super- 
saturation expression is only a simple possible extreme in 
reflecting real mechanisms involved in leading to such a 
deviation. 

The use of the CSIF concept will also provide a rational 
approach to the study of effects of mixing processes on 
the CSD (Noar and Shinnar, 1963; Lieb, 1973; Becker 
and Larson, 1969). By extending the similar concepts 
available in recent residence time distribution studies 
(Chen, 1971; McCord, 1972), the effects of micromixing 
on the transient and steady state CSD from crystallizers 
have been studied and will be reported separately. 
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NOTATION 

L, L’ = crystal particle size (X, X’) 
LO = lower limit of the crystal particle size interval 

L, = critical particle size in the crystal breakage model 

n(L) = population density crystal size distribution func- 
tion 

no, (no)’ = lower limit of the population density crystal 
size distribution function n(L) in a specific par- 
ticle size interval 

P(L) = term in the size-dependent growth rate expres- 
sion 

Q = flow rates of feed and effluent streams of the 
cry st allizer 

r,  rl ,  r2 = crystal growth rate 
P 
S, S1, Sz = supersaturation 
T = residence time 
V, Vo = characteristic volume of the crystallizer 
y 

A(L) = crystal size intensity function ( A  (X) ) 

(XO)  

( X C )  

= term in the size-dependent growth rate expression 

= dimensionless population density crystal size dis- 
tribution function, n/no or n/ (no)’ 

- - 
A(L) = average crystal size intensity function ( A  ( X )  ) 

Notations written within parentheses in the above list 
refer to the corresponding dimensionless forms. Other un- 
defined notations appearing in the text such as a, b, p, y 
are all constant parameters in the specific equations. 
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